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Question 1 (12 Marks) Commence a NEW page. Marks

(a) Evaluate

(
1

e2.5
− 1

)2

correct to 3 significant figures. 2

(b) Express

√
2

1 +
√

5
with a rational denominator. 2

(c) Differentiate y = (4x + 1)3 with respect to x. 2

(d) Factorise x4y − xy4 fully. 2

(e) Solve the following for x:

i. 22x−3 = 32. 2

ii. x2 − x = 2. 2
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Question 2 (12 Marks) Commence a NEW page. Marks

(a) The line ℓ has the equation 2x + 3y + 6 = 0. It cuts the x axis at A and the y axis
at B and it intersects the line k at C. Line k is perpendicular to ℓ and cuts the x

axis at D.

A

B

C

D

k
ℓ

2x + 3y + 6 = 0

x

y

NOT TO SCALE

Copy or trace the diagram on to your paper.

i. Find the coordinates of A. 1

ii. Find the coordinates of B. 1

iii. If B is the midpoint of AC prove that the coordinates of C are (3,−4). 2

iv. Show that the equation of k is given by 3x − 2y − 17 = 0. 2

v. Write the 3 inequalities required to define the interior region of △ACD. 3

(b) Find the equation of the tangent to the curve y = x2 ln x at the point P where
x = e.

3
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Question 3 (12 Marks) Commence a NEW page. Marks

(a) Consider the parabola (x − 2)2 = 8(y + 1).

i. Write down the focal length. 1

ii. Write down the coordinates of the focus. 1

iii. Find the equation of the directrix. 1

(b) Differentiate with respect to x:

i. 2x3 − x−1. 2

ii.
sinx

e2x
. 2

(c) Evaluate

∫ e

1

(

x2 +
2

x

)

dx. 2

(d) Find an approximation for

∫ 3

1
g(x) dx by using Simpson’s Rule with the following

function values in the table below, correct to 2 decimal places.

x 1 1.5 2 2.5 3

g(x) 12 8 0 3 5

3
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Question 4 (12 Marks) Commence a NEW page. Marks

(a) Michael is training for a local marathon. He has trained by completing practice
runs over the marathon course. So far he has completed three practice runs with
times shown below.

Week Time (hours)

1 3

2 2.7

3 2.43

i. Show that these times form a geometric series with common ratio r = 0.9. 1

ii. If this series continues, what would be his expected time in Week 5, completed
to the nearest minute?

2

iii. How many hours and minutes will he have run in total in his practice runs in
these 5 weeks?

2

iv. If the previous winning time for the marathon was 1 hour 15 min, how many
weeks must he keep practising to be able to run the marathon in less that the
previous winning time?

2

(b) A, B and C are markers in an orienteering course. AC = 4 km and BC = 5 km.
The bearing of C from B is 040◦T.

B A

C

N

4
k
m

5
km

40◦

Copy or trace the diagram into your writing booklet.

i. If the bearing of B from A is 260◦T, show that ∠CBA = 40◦, giving reasons. 2

ii. Find ∠CAB to the nearest degree. 2

iii. Hence or otherwise, find the bearing of C from A. 1
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Question 5 (12 Marks) Commence a NEW page. Marks

(a) If f(x) = x2 − x,

i. Evaluate and expand f(x + h). 1

ii. Hence or otherwise, differentiate f(x) = x2 − x from first principles. 3

(b) In △ABC as shown in the diagram, ∠ABC = 125◦, ∠ADB = 55◦, AD = 12 cm
and DC = 4 cm.

B

A

C

D
4 cm

12 cm

x

55◦
125◦

NOT TO SCALE

i. Show that △ABC 9 △BDC. 3

ii. Find x, the length of BC. 2

(c) Let α and β be the solutions of 2x2 − 6x − 1 = 0.

i. Find α + β. 1

ii. Find αβ. 1

iii. Hence, find 3α − α2. 1
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Question 6 (12 Marks) Commence a NEW page. Marks

(a) A particle is moving in a straight line. Its velocity for t ≥ 0 is given by

v =
4

t + 1
− 2t

i. Find when the particle changes direction. 2

ii. Find the exact distance travelled in the first 2 seconds. 3

(b) For the function y = x3 − 3x2 − 9x + 1,

i. Find the coordinates of any stationary points and determine their nature. 3

ii. Find any points of inflexion. 2

iii. Neatly sketch the curve. 2
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Question 7 (12 Marks) Commence a NEW page. Marks

(a) A farmer has a large tank full of water. The tank leaks water from a hole. The
volume of water remaining in the tank, in litres, is given by

V = 4 000 + 10 000e−0.04t

where t is the time in hours after the leakage commenced.

i. How many litres of water were in the tank when the leakage commenced? 1

ii. At what rate is the water leaking after 5 hours? Answer correct to 1 decimal
place.

2

iii. How many litres will eventually be in the tank after a long period of time? 1

iv. If the farmer realises the tank is leaking when the volume of water remaining
is 6 000 L, how long did it take him to realise there was a hole in the tank?
Answer correct to the nearest minute.

2

(b) The diagram shows the graphs y = sin x and y = cos x, 0 ≤ x ≤ 2π. The graphs
intersect at A and B.

π

2π

1

−1

y = cos xy = sin x
A

B

x

y

i. Show that A has coordinates

(
π

4
,

1√
2

)

and find the coordinates of B. 3

ii. Find the area enclosed by the two graphs. 3
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Question 8 (12 Marks) Commence a NEW page. Marks

(a) The diagram shows the region bounded by the curve y = 2x2 − 2, the line y = 6
and the x and y axes.

3

y = 2x2 − 2

−1 1

−2

6

x

y

Find the volume of the solid of revolution formed when the region is rotated about
the y axis.

(b) Kevin plays computer games competitively. From past experience, Kevin has a 0.8
chance of winning a game of Sawcraft and a 0.6 chance of winning CounterStrife.
During a LAN party he plays two games of Sawcraft and one of CounterStrife.

What is the probability that he will win:

i. all 3 games? 1

ii. No games? 2

iii. At least 1 game? 2

(c) For the quadratic equation x2 + (p − 3)x − (2p + 1) = 0,

i. Show that the discriminant is ∆ = p2 + 2p + 13. 2

ii. Hence or otherwise, show that the quadratic equation x2+(p−3)x−(2p+1) = 0
will always have real, distinct roots for real valued p.

2
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Question 9 (12 Marks) Commence a NEW page. Marks

(a) Consider the geometric series 1 +
4

3
sin2 x +

16

9
sin4 x +

64

27
sin6 x + · · · .

i. When the limiting sum exists, find its value in simplest form. 2

ii. For what values of x in the interval 0 < x < π
2 does the limiting sum of this

series exist?
2

(b) The diagram below represents (in metres) the dimensions of a small garden.

1
2x

2
√

5

1
2x + y

x

i. Show that y = (20 − x2)
1

2 . 2

ii. Write an expression, in terms of x, for the perimeter P (in metres) of the
garden, and find a value of x for which

dP

dx
= 0

4

iii. Establish whether this value of x gives a minimum or maximum value of P

and find that value of P .
2
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Question 10 (12 Marks) Commence a NEW page. Marks

(a) A city has a growing population at a rate proportional to the current population,
that is

dP

dt
= kP

i. Verify that P (t) = P0e
kt, t > 0 is a solution of the equation. 1

ii. If the population on 1 January 2006, which is t = 1, was 147 200 and on 1
January 2007 (when t = 2) was 154 800, find the initial population and the
value of k. Round your answer down to the nearest whole number.

2

iii. Find the population on 1 January 2009. 1

iv. Find the time it will take for the population to double. 2

(b) A car dealership has a car for sale for the cash price of $20 000. It can also be
purchased on terms over 3 years. The first 6 months are interest free. Subsequently,
interest is charged at 12% per annum, calculated monthly. Repayments are to be
made in equal monthly instalments at the end of the first month.

A customer purchases the car on these terms and agrees to monthly repayments of
$M per month. Let $An be the amount owing at the end of the n-th month.

i. Find an expression for A6. 1

ii. Show that A8 = (20 000 − 6M) 1.012 − M(1 + 1.01). 2

iii. Find an expression for A36. 1

iv. Find the value of M . 2

End of paper.

NORTH SYDNEY BOYS’ HIGH SCHOOL



STANDARD INTEGRALS

∫

xn dx =
1

n + 1
xn+1 + C, n 6= −1; x 6= 0 if n < 0

∫
1

x
dx = ln x + C, x > 0

∫

eax dx =
1

a
eax + C, a 6= 0

∫

cos ax dx =
1

a
sin ax + C, a 6= 0

∫

sin ax dx = −1

a
cos ax + C, a 6= 0

∫

sec2 ax dx =
1

a
tan ax + C, a 6= 0

∫

sec ax tan ax dx =
1

a
sec ax + C, a 6= 0

∫
1

a2 + x2
dx =

1

a
tan−1 x

a
+ C, a 6= 0

∫
1√

a2 − x2
dx = sin−1 x

a
+ C, a > 0,−a < x < a

∫
1√

x2 − a2
dx = ln

(

x +
√

x2 − a2
)

+ C, x > a > 0

∫
1√

x2 + a2
dx = ln

(

x +
√

x2 + a2
)

+ C

NOTE: ln x = loge x, x > 0
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Suggested marking scheme

Question 1

(a) (2 marks)

X [1] for correct value.

X [1] for 3 significant figures.

(
1

e2.5
− 1

)

= 0.843 (3 s.f.)

(b) (2 marks)

X [1] for multiplying by the fraction with
appropriate conjugate surd.

X [1] for final answer.

√
2

1 +
√

5
× 1−

√
5

1−
√

5
= −

√
2 −

√
10

4
=

√
10 −

√
2

4

(c) (2 marks)

X [1] for correct usage of chain rule.

X [1] for final answer.

dy

dx
=

dy

du
× du

dx

= 3(4x + 1)2 × 4

= 12(4x + 1)2

y = u3 u = 4x + 1

y′ = 3u2 u′ = 4

(d) (2 marks)

X [1] for correctly factorising xy.

X [1] for correctly factorising cubic.

x4y − xy4 = xy(x3 − y3)

= xy(x − y)(x2 + xy + y2)

(e) i. (2 marks)

X [1] for identifying 32 = 25.

X [1] for correct solution.

22x−3 = 32 = 25

2x − 3 = 5

2x = 8 ⇒ x = 4

ii. (2 marks)
X [1] for correctly factorising quadratic.

X [1] for x = −1, 2.

x2 − x = 2

x2 − x − 2 = 0

(x − 2)(x + 1) = 0

x = −1, 2

Question 2

(a) i. (1 mark)

2x + 3y + 6 = 0

When y = 0, 2x + 6 = 0

2x = −6 ⇒ x = −3

ii. (1 mark)

2x + 3y + 6 = 0

When x = 0, 3y + 6 = 0

3y = −6 ⇒ y = −2

iii. (2 marks)
X [1] for using midpoint formula.

X [1] for final answer C(3,−4).

(0,−2) =

(
xc + (−3)

2
,
yc + 0

2

)

xc − 3

2
= 0

xc = 3

yc

2
= −2

yc = −4

∴ C(3,−4)

iv. (2 marks)
X [1] for correct gradient of k.

X [1] for correct y intercept of k.

mℓ = −2

3
⇒ mk =

3

2
as ℓ ⊥ k

y =
3

2
x + b

∣
∣
∣x=3
y=−4

−4 =
3

2
× 3 + b

∴ b = −4 − 9

2
= −17

2

∴ y =
3

2
x − 17

2
⇒ 3x − 2y − 17 = 0

NORTH SYDNEY BOYS’ HIGH SCHOOL LAST UPDATED SEPTEMBER 2, 2008
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v. (3 marks)

X [1] for each correct inequality.







y ≥ −2
3x − 2

y ≤ 0

y ≥ 3
2x − 17

2







2x + 3y + 6 ≥ 0

y ≤ 0

3x − 2y − 17 ≤ 0

(b) (3 marks)

X [1] for application of product rule.

X [1] for finding function value at x = e.

X [1] for final answer.

y = x2 ln x

u = x2 v = ln x

u′ = 2x v′ = 1
x

dy

dx
= uv′ + vu′ = x2 · 1

x
+ 2x · ln x

= x + 2x ln x

∣
∣
∣
x=e

= e + 2e ln e = 3e

The function value at x = e is

y = x2 ln x
∣
∣
∣
x=e

= e2

Substituting (e, e2) into equation of the
tangent,

∴ y = 3ex + b

∣
∣
∣x=e
y=e2

e2 = 3e2 + b

b = −2e2

∴ y = 3ex − 2e2

Question 3

(a) i. (1 mark)

(x − 2)2 = 4 × 2(y + 1)

∴ a = 2

ii. (1 mark)

V (2,−1) a = 2

∴ F (2,−1 + a) = F (2, 1)

iii. (1 mark)

∴ y = −1 − a = −3

(b) i. (2 marks)

X [1] for correct differentiation of each
term.

d

dx

(
2x3 − x−1

)
= 6x2 + x−2

ii. (1 mark)

X [1] for correct application of product
or quotient rule

X [1] for correct final answer

dy

dx
=

vu′ − uv′

v2

=
e2x cos x − 2e2x sin x

(e2x)2

=
��e2x (cos x − 2 sin x)

��e2x · e2x

=
cos x − 2 sin x

e2x

u = sin x v = e2x

u′ = cos x v′ = 2e2x

Alternatively, apply the product rule
to y = e−2x sin x to obtain

y′ = e−2x (cos x − 2 sin x)

(c) (2 marks)

X [1] for finding the primitive.

X [1] for correct evaluation of limits.

∫ e

1

(

x2 +
2

x

)

dx =
1

3
x3 + 2 ln x

∣
∣
∣
∣

e

1

=
1

3

(
e3 − 1

)
+ 2

(

���* 1
ln e −��ln 1

)

=
1

3
e3 +

5

3

(d) (3 marks)

X [1] recollection of Simpson’s Rule

X [1] substitution of pronumerals.

X [1] evaluation.

A ≈ h

3
(y1 + 4

∑
yeven + 2

∑
yodd + yℓ)

=
1
2

3

(

12 +�����: 44
4(8 + 3) + 0 + 5

)

=
1

6
(17 + 44) =

61

6

LAST UPDATED SEPTEMBER 2, 2008 NORTH SYDNEY BOYS’ HIGH SCHOOL
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Question 4

(a) i. (1 mark)

T2

T1
=

2.7

3.0
= 0.9

T3

T2
=

2.43

2.70
= 0.9

ii. (2 marks)

X [1] for substitution of pronumerals.

X [1] for correct answer to nearest
minute.

Tn = arn−1

T5 = 3 × 0.94 = 1.9683 = 1 h 59 min

iii. (2 marks)

X [1] for substitution of pronumerals.

X [1] for correct answer to nearest
minute.

Sn =
a(rn − 1)

r − 1

S5 =
3 × (0.95 − 1)

0.9 − 1

= 12.2853 = 12 h 17 min

iv. (2 marks)

X [1] for correct evaluation resulting in
n ≈ 9.31.

X [1] for correct answer to ⌈n⌉.

Tn = 1.25
÷3

h = 3
÷3

× 0.9n−1

0.9n−1 =
1.25

3

(n − 1) log 0.9 = log
1.25

3

n =
log 1.25

3

log 0.9
+ 1 ≈ 9.31

Michael must run for 10 weeks to
improve on the previous record of 1 h
15 min.

(b) i. (2 marks)

X [1] for correct arithmetic.

X [1] for correct reasoning.

Any arithmetic/reasoning that is not
acceptable will result in no marks
awarded.

B A

C

N

EB

WA

260◦

4
k
m

5
km

40◦

• ∠WAAB = 10◦ since the bearing of
B from A is 260◦.

• ∠ABEB = 10◦ (alt. ∠ on ‖ lines)

• ∴ CBA = 90◦ − 40◦ − 10◦ = 40◦.
(complementary ∠)

ii. (2 marks)
X [1] for application of sine rule.

X [1] for final answer.

×5
sin 40◦

4
=

×5
sin ∠CAB

5

sin ∠CAB =
5 sin 40◦

4
≈ 0.803

∠CAB = 53◦28′ = 53◦ (nearest ◦)

iii. (1 mark)
The bearing of C from A is 53◦28′ +
260◦ = 313◦28′. Also accept 313◦.

Question 5

(a) i. (1 mark)

f(x + h) = (x + h)2 − (x + h)

= x2 + 2hx + h2 − x − h

ii. (3 marks)
X [1] for recollection of limit.

X [1] for substitution.

X [1] for final answer.

f(x + h) − f(x)

= (��x
2 + 2hx + h2 −�x − h) − (��x

2 −�x)

= 2xh + h2 − h

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
h→0

2xh + h2 − h

h

= lim
h→0

�h(2x + h − 1)

�h
= 2x − 1

NORTH SYDNEY BOYS’ HIGH SCHOOL LAST UPDATED SEPTEMBER 2, 2008
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(b) i. (3 marks)
X [1] for each reason shown in summary.

B

A

C

16 cm

x

D C

B

4 cm

x cm

125◦

55◦
125◦

In △ABC and △BDC,

1. ∠CDB = 180◦ − 55◦ = 125◦ =
∠ABC (supplementary ∠)

2. ∠BCD common to △ABC and
△BDC.

3. ∴ ∠DBC = ∠BAC (angle sum of
△) since two other pairs of angles
are equal.

∴ △ABC 9 △BDC (AAA)

ii. (2 marks)
X [1] for relating corresponding sides in

the same ratio.

X [1] for correctly evaluating x.

Since ∴ △ABC 9 △BDC, all
corresponding sides are in the same
ratio, i.e.

x

4
=

16

x

x2 = 64 ⇒ x = 8

(c) i. (1 mark)

2x2 − 6x − 1 = 0

α + β = − b

a
= −−6

2
= 3 (5.1)

ii. (1 mark)

αβ =
c

a
= −1

2

iii. (1 mark)

3α − α2 = α(3 − α)

From (5.1), β = 3 − α

∴ α(3 − α) = αβ = −1

2

Question 6

(a) i. (2 marks)

X [1] for recollection of particle changing
direction when v = 0.

X [1] for correct arithmetic and
reasoning to obtain t = 1.

Particle changes direction when v = 0

4

t + 1
= 2t

4 = 2t(t + 1)

2t2 + 2t − 4 = 0

t2 + t − 2 = 0

(t + 2)(t − 1) = 0

t = 1 since t ≥ 0

ii. (3 marks)

X [1] for applying absolute value to both
terms of the distance.

X [1] for d = |4 ln 2 − 1| +
∣
∣4 ln 3

2
− 4

∣
∣.

X [1] for d = 4 ln 4

3
+ 3 m.

X [Note:] If d =
∫ 2

0

4

t+1
− 2t dt is used, a

maximum of [1] mark is awarded.

d =

∣
∣
∣
∣

∫ 1

0

4

t + 1
− 2t dt

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ 2

1

4

t + 1
− 2t dt

∣
∣
∣
∣

=
∣
∣
∣4 ln(t + 1) − t2

∣
∣1

0

∣
∣
∣

+
∣
∣
∣4 ln(t + 1) − t2

∣
∣2

1

∣
∣
∣

=
∣
∣
∣4

(
ln 2 −��ln 1

)
−

(

12 −��0
2
)∣
∣
∣

+
∣
∣4

(
ln 3 − ln 2) −

(
22 − 12

)∣
∣

= |4 ln 2 − 1| +
∣
∣4 ln 3

2 − 3
∣
∣

= (4 ln 2 − 1) +
(
3 − 4 ln 3

2

)

= 4
(
ln 2 − ln 3

2

)
+ 2

= 4 ln 4
3 + 2 m

LAST UPDATED SEPTEMBER 2, 2008 NORTH SYDNEY BOYS’ HIGH SCHOOL
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(b) i. (3 marks)
X [1] correct identification of x = −1, 3.

X [1] testing nature of stationary points.

X [1] finding coordinates & stating
nature.

y = x3 − 3x2 − 9x + 1

dy

dx
= 3x2 − 6x − 9 = 3(x2 − 2x − 3)

= 3(x − 3)(x + 1)

Stationary pts. at y′ = 0.

∴ x = −1, 3

y = x3 − 3x2 − 9x + 1
∣
∣
x=−2

= −1

y = x3 − 3x2 − 9x + 1
∣
∣
x=−1

= 6

y = x3 − 3x2 − 9x + 1
∣
∣
x=0

= 1

y = x3 − 3x2 − 9x + 1
∣
∣
x=3

= −26

y = x3 − 3x2 − 9x + 1
∣
∣
x=4

= −19

x −2 −1 0 3 4
dy
dx

+ 0 − 0 +

y −1

�*��

6

@
@

@R−26

�*��

−19

∴ (−1, 6) is a local maximum and
(3,−26) is a local minimum.

ii. (2 marks)
X [1] obtaining y′′ = 6x − 6.

X [1] showing change in concavity when
x = 1.

dy

dx
= 3x2 − 6x − 9 ⇒ d2y

dx2
= 6x − 6

Pt. of inflexion when y′′ = 0 &
concavity change occurs, i.e.

6x − 6 = 0 ⇒ x = 1

y′′ = 6x − 6
∣
∣
∣
x=0

< 0

y′′ = 6x − 6
∣
∣
∣
x=2

> 0

x 0 1 2

y′′ ⌢ 0 ⌣

iii. (2 marks)
X [1] shape of curve.

X [1] coords of stationary pts, pt. of
inflexion.

−26

−10

6
3

−1

1

|

y = x3 − 3x2 − 9x + 1

x

y

Question 7

(a) i. (1 mark)

V (0) = 4 000 + 10 000e0 = 14 000 L

ii. (2 marks)
X [1] for obtaining V ′(t) = −400e−0.04t.

X [1] for evaluating V ′(5) = −327.5 L/h.

V (t) = 4 000 + 10 000e−0.04t

V ′(t) = −0.04 × 10 000e−0.04t

= −400e−0.04t

V ′(5) = −327.5 L/h (1 d.p.)

iii. (1 mark)

lim
t→∞

(
4 000 +(((((((

10 000e−0.04t
)

= 4 000 L

iv. (2 marks)
X [1] for obtaining e−0.04t = 1

5
.

X [1] for obtaining t1 = 40.23 = 40 h 14
min.

Let t1 be the time the farmer is aware
of the leak.

V (t1) = 6 000
−4 000

= 4 000
−4 000

+ 10 000e−0.04t

2 000
÷10 000

= 10 000
÷10 000

e−0.04t

e−0.04t = 1
5

−0.04t = ln 1
5

t =
ln 1

5

−0.04
= 40.23 · · · h

40 h 14 min have elapsed since the leak
was discovered.
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(b) i. (3 marks)

X [1] for solution of sinx = cosx.

X [2] for A
(

π

4
, 1√

2

)

, B
(

5π

4
,− 1√

2

)

.

sin x = cos x

tan x = 1
⇒ x =

π

4
,
5π

4

∴ A

(
π

4
,

1√
2

)

B

(
5π

4
,− 1√

2

)

ii. (3 marks)

X [1] setting up integral.

X [1] for successfully finding primitive.

X [1] for A = 2
√

2.

A =

∫ 5π

4

π

4

sin x dx −
∫ 5π

4

π

4

cos x dx

=

∫ 5π

4

π

4

(sin x − cos x) dx

= − cos x − sin x

∣
∣
∣

5π

4

π

4

= −
(
cos 5π

4 − cos π
4

)
−

(
sin 5π

4 − sin π
4

)

= −
(

− 1√
2
− 1√

2

)

−
(

− 1√
2
− 1√

2

)

= 2√
2

+ 2√
2

= 2
√

2

Question 8

(a) (3 marks)

X [1] for changing the subject to x2.

X [1] for setting up integral.

X [1] for solution V = 15π.

y = 2x2 − 2 ⇒ y + 2 = 2x2

x2 =
y + 2

2

V = π

∫

x2 dy

= π

∫ 6

0

y + 2

2
dy

=
π

2

(
1

2
y2 + 2y

)∣
∣
∣
∣

6

0

=
π

2

(

�
�

��
18

1

2
(62) +���*

12
2(6)

)

= 15π units3

(b) Tree diagram for this question:

Ws
0.8

Ws0.8
Wc0.6

Lc0.4
Ls0.2

Ls
0.2

Ws0.8

Ls0.2

Wc0.6

Lc0.4
i. (1 mark)

P (WsWsWc) = (0.8)2 × (0.6) = 0.384

ii. (2 marks)
X [1] Find the complements of Ws, Wc:

P (Ls) = 1 − P (Ws) = 0.2

P (Lc) = 1 − P (Wc) = 0.4

X [1] correct evaluation of

P (LsLsLc) = 0.016

P (LsLsLc) = (0.2)2 × (0.4) = 0.016

iii. (2 marks)
X [1] Find the complement:

P (win at least 1) = 1 − P (LsLsLc)

X [1] correct evaluation.

P (win at least 1) = 1 − P (win none)

= 1 − P (LsLsLc)

= 1 − 0.016 = 0.984

(c) i. (2 marks)

a = 1 b = (p − 3) c = −(2p + 1)

∆ = b2 − 4ac

= (p − 3)2 − 4 × 1 ×−(2p + 1)

= p2 − 6p + 9 + 8p + 4

= p2 + 2p + 13

ii. (2 marks)
X [1] correctly evaluating ∆∆ < 0.

X [1] logical reasoning.

∆∆ = 22 − 4 × 1 × 13 = 4 − 42 < 0

∴ ∆ = p2 + 2p + 13 > 0 ∀p

Since ∆ > 0, therefore the quadratic
always has real, distinct roots for real
values of p.
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Question 9

(a) i. (2 marks)

X [1] for correct identification a = 1,
r = 4

3
sin2 x.

X [1] for correct substitution of a and r

to the limiting sum S =
1

1 − 4

3
sin2 x

.

a = 1 r =
4

3
sin2 x

S =
a

1 − r
=

1

1 − 4
3 sin2 x

× 3
3

=
3

3 − 4 sin2 x

ii. (2 marks)

X [1] for equating 0 <
∣
∣ 4

3
sin2 x

∣
∣ < 1.

X [1] for finding 0 < x < π

3
.

|r| < 1 for limiting sum to exist.
∣
∣
∣
∣

4

3
sin2 x

∣
∣
∣
∣
< 1

0 <
4

3
sin2 x < 1

0 < sin2 x <
3

4

0 < sin x <

√
3

2

0 < x <
π

3

(b) i. (2 marks)

X [1] for using Pythagoras’ Theorem

X [1] for showing required y = (20−x2)
1

2

1
2x

2
√

5

1
2x

y

x

x

x2 + y2 =
(

2
√

5
)2

x2 + y2 = 4 × 5 = 20

y2 = 20 − x2 ⇒ y = (20 − x2)
1

2

ii. (4 marks)

X [1] for obtaining

P = 2x + (20 − x2)
1

2 + 2
√

5

X [1] differentiating P (x) correctly.

X [1] obtaining x2 = 16.

X [1] concluding x = 4 as x is a length.

P = x + 1
2x +

(
1
2x + y

)
+ 2

√
5

= 2x + (20 − x2)
1

2 + 2
√

5

dP

dx
= 2 +

1

�2
× (−�2x) × (20 − x2)−

1

2

= 2 − x√
20 − x2

= 0

x2

20 − x2
= 4

x2 = 80 − 4x2

5x2

÷5
= 80

÷5
⇒ x2 = 16

∴ x = 4 since x is a length & x > 0

iii. (2 marks)

X [1] Checking dP

dx
within a

neighbourhood of x = 4.

X [1] Evaluating P (4) = 2
√

5 + 10.

dP

dx
exists when x ≥ 0 and x ≤

√
20.

dP

dx
= 2 − x√

20 − x2

∣
∣
∣
∣
x=3

= 1.095

dP

dx
= 2 − x√

20 − x2

∣
∣
∣
∣
x=

√
17

= −0.38

x 3 4
√

17
dy
dx

+ 0 −

y

13.8

��
�

�

2
√

5 + 10

@
@

@R
14.5

∴ x = 4 makes P (4) = 2
√

5+10 a local
maximum.
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Question 10

(a) i. (1 mark)
Differentiating P (t),

P ′(t) = P0kekt = k

=P (t)
︷ ︸︸ ︷

P0e
kt = kP

ii. (2 marks)
X [1] for obtaining k = ln 387

368
.

X [1] for obtaining P0 = 139 973.

P (1) = 147 200 = P0e
k (10.1)

P (2) = 154 800 = P0e
2k (10.2)

(10.2) ÷ (10.1):

154 800

147 200
= ek

k = ln
387

368
(10.3)

Substitute (10.3) to (10.1)

147 200 = P0 exp

(

ln
387

368

)

= P0 ×
387

368

P0 =
147 200 × 368

387
= 139 973

iii. (1 mark)

P (4) = 139 973 exp

(

ln
387

368
× 4

)

= 171 197

iv. (2 marks)
X [1] for obtaining ln 2 = t ln 387

368
.

X [1] for obtaining t ≈ 14 years.

P (t) = 2��P0 = ��P0 exp

(

ln
387

368
× t

)

ln 2 = t ln
387

368

t =
ln 2

ln 387
368

= 13.7688 · · ·
= 14 years

(b) i. (1 mark)
Since no interest is applied in the first
6 mths, then the amount owing will be

A1 = 20 000 − M

A2 = 20 000 − 2M

...

A6 = 20 000 − 6M

ii. (2 marks)

X [1] for correctly finding A7.

X [1] for correctly finding A8.

After the 6th month, 12% p.a. = 0.01
p.m. interest is applied to A6.

A7 = A6 × 1.01 − M

= (20 000 − 6M) × 1.01 − M

A8 = A7 × 1.01 − M

=
(
(20 000 − 6M) × 1.01 − M

)
× 1.01 − M

= (20 000 − 6M) × 1.012

− 1.01M − M

= (20 000 − 6M) × 1.012 − M(1 + 1.01)

iii. (1 mark)

A9 = (20 000 − 6M) × 1.013

− M(1 + 1.01 + 1.012)

A36 = (20 000 − 6M) × 1.0130

− M(1 + 1.01 + 1.012 + · · · + 1.0129
︸ ︷︷ ︸

30 terms

)

iv. (2 marks)

X [1] for finding S30 = 100
(
1.0130 − 1

)
.

X [1] for finding M = $628.78

Sn =
a(rn − 1)

r − 1

S30 =
1(1.0130 − 1)

1.01 − 1
= 100

(
1.0130 − 1

)

A36 = 0 as the loan is repaid and no
amount is outstanding.

Letting K = 1.0130,

(20 000 − 6M) × K = 100M (K − 1)

20 000K − 6MK = 100M (K − 1)

20 000K = 100M (K − 1) + 6MK

= M (100K − 100 + 6K)

= M (106K − 100)

∴ M =
20 000 × 1.0130

106 × 1.0130 − 100
= 628.78

Their repayment is $628.78 per month.
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